Universidade Federal de Alagoas Instituto de Matemática

Padrão de Resposta - Prova de Doutorado

1. Estabeleça um homeomorfismo entre $\mathbb{R}^n \setminus \{0\}$ e o produto cartesiano $\mathbb{S}^{n-1} \times \mathbb{R} \subset \mathbb{R}^{n+1}$. (obs: \mathbb{S}^{n-1} denota o conjunto $\{x \in \mathbb{R}^n; ||x|| = 1\}$.)

Solução: Defina $f: \mathbb{S}^{n-1} \times \mathbb{R} \to \mathbb{R}^n \setminus \{0\}$ por $f(t,x) = e^t x$, mostre que f é contínua. Em seguida mostre que $g(y) = (\frac{y}{|y|}, \ln|y|)$ é a inversa de f e mostre que g é contínua.

2. Prove que o complementar de um conjunto enumerável Z em \mathbb{R}^n é conexo.

Mostre que o conjunto $\mathbb{R}^n \setminus \mathbb{Z}$ é conexo por caminhos. Para isso tome a e b em $\mathbb{R}^n \setminus Z$ e mostre que existe um $c \in R^n$ tal que os segmentos de reta [a,c] e [c,b] estão ambos contidos em $\mathbb{R}^n \setminus Z$.

3. Mostre que o conjunto das matrizes quadradas de ordem n, onde n > 1, e posto n - 1 é uma hiperfície de classe C^{∞} .

Solução: Usando a regra de Cramer deduz-se que

$$\frac{\partial \det}{\partial x_{ij}}(A) = (-1)^{i+j} A_{[ij]},$$

onde $A_{[ij]}$ é o determinante da matriz quadrada de ordem n-1 obtida de A pela omissão da linha i e coluna j. Visto que o posto da matriz A é n-1, para algum par (i,j) teremos $\frac{\partial \det}{\partial x_{ij}}(A) \neq 0$ e pelo Teorema da Função Implícita deduz-se o desejado.

4. Determine o polinômio de Taylor de ordem 2 da função

$$f(x,y) = e^{-(x^2 + y^2)}$$

no ponto (1,2).

Solução: Após um cálculo obtemos que $f(1,2) = e^{-5}$, $\frac{\partial f}{\partial x}(1,2) = -2e^{-5}$, $\frac{\partial f}{\partial y}(1,2) = -4e^{-5}$, $\frac{\partial^2 f}{\partial x^2}(1,2) = 2e^{-5}$, $\frac{\partial^2 f}{\partial y^2}(1,2) = 14e^{-5}$, $\frac{\partial^2 f}{\partial y \partial x}(1,2) = 8e^{-5}$. O polinômio procurado é $p(x,y) = e^{-5}(1-2(x-1)-4(y-2)+(x-1)^2+8(x-1)(y-2)+7(y-2)^2).$

5. Seja $f: \mathbb{R}^n \to \mathbb{R}$, onde n > 1, uma função contínua, possuindo todas as derivadas direcionais em qualquer ponto de \mathbb{R}^n . Mostre que se $\frac{\partial f}{\partial u}(u) > 0$ para todo $u \in \mathbb{S}^{n-1}$ então existe um ponto $a \in \mathbb{R}^{n-1}$ tal que $\frac{\partial f}{\partial v}(a) = 0$, para qualquer $v \in \mathbb{R}^n$.

Solução: Note que a condição $\frac{\partial f}{\partial u}(u) > 0$, se $u \in \mathbb{S}^{n-1}$, implica que existe um $\delta > 0$ tal que se $1 - \delta < t < 1$ então f(tu) < f(u). Daí o mínimo global de f(x) em \mathbb{B}^n é atingido em um ponto a no interior da bola fechada. Então para qualquer $v \in \mathbb{R}^n$, a função $\phi(t) = f(a+tv)$ tem um mínimo local em t = 0. Portanto

$$\frac{\partial f}{\partial v}(a) = \phi'(0) = 0.$$